## Mark Scheme (Results)

Summer 2018

Pearson Edexcel International GCSE In Mathematics A (4MA0) Paper 3H

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 4MAO_3H_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of $M$ marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- eeoo - each error or omission


## - No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses A (and B) marks on that part, but can gain the $M$ marks.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

## - Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GCSE Maths 3H
Apart from Questions 6b, 11, 13, 14, 17, 21c (where the mark scheme states otherwise), the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
1 (a) \\
(b)
\end{tabular} \& \[
\frac{3167.352831}{13.7}
\] \& \[
231.19(3637)
\]
\[
230
\] \& 2

1 \& | M1 For 3167.35(2831) rounded or truncated to at least 2 decimal places or for 13.7 or for 231.(193....) rounded or truncated to at least 3 significant figures |
| :--- |
| A1 Accept rounded or truncated to at least 2 decimal places |
| B1 ft from (a) provided more than 3 significant figures | <br>

\hline 2 \& \[
$$
\begin{aligned}
& \hline 62.8 \div 8(=7.85) \text { or } 12 \div 8(=1.5) \text { or } \\
& 62.8 \div 2(=31.4) \text { or } 62.8 \div 4(15.7) \text { or } \\
& 8 x=62.8 \times 12 \text { or } 8 x=753.6
\end{aligned}
$$

\] \& 94.20 \& 2 \& | M1 Or for a complete method Eg $62.8 \times \frac{12}{8}$ or $62.8 \times 1.5$ |
| :--- |
| A1 Accept 94.2 | <br>

\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|c|}
\hline Question \& Working \& Answer \& Mark \& \& Notes \\
\hline \multirow[t]{2}{*}{4 (a)} \& \& Reflection in the line with equation \(x\)
\[
=6
\] \& 2 \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& \begin{tabular}{l}
for reflection for \(x=6\) \\
NB. Award no marks if more than one transformation given
\end{tabular} \\
\hline \& \& trapezium with vertices
\[
\begin{aligned}
\& (4,-2)(4,-4)(7,-6) \\
\& (7,-2)
\end{aligned}
\] \& 2 \& B2 \& If not B2 then award B1 for trapezium in correct orientation or a trapezium with 3 vertices correct \\
\hline \multirow[t]{4}{*}{5 (a)} \& \multirow[t]{2}{*}{\[
x+2 x+3 x+x+x \text { or } 8 x
\]
\[
x+2 x+3 x+x+x=1 \text { or } 8 x=1 \text { or } \frac{x}{8 x}
\]} \& \multirow[t]{4}{*}{\(\frac{1}{8}\) oe
\[
75
\]} \& \multirow[t]{2}{*}{3} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{M1

M1}} <br>
\hline \& \& \& \& \& <br>

\hline \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 3 \times " \frac{1}{8} \times 200 \text { or } \frac{3 x}{8 x} \times 200 \text { or } \\
& 200 \times 3 x \text { or } 600 x
\end{aligned}
$$} \& \& \multirow[t]{2}{*}{2} \& M1 \& ft from (a) if $0<2(\mathrm{a})$ " < 1 <br>

\hline \& \& \& \& A1 \& ft from (a) if 0 < "(a)" < 1 SCB1 for an answer of 25 Only award A1 for numerical answers <br>
\hline
\end{tabular}



| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
|  | $\operatorname{Eg}\left(H J^{2}=\right) 16.2^{2}-11.8^{2}(=123.2)$ or $\left(H J^{2}=\right) 262.44-139.24$ <br> $\operatorname{Eg}(H J=) \sqrt{16.2^{2}-11.8^{2}}$ or $\sqrt{123.2^{\prime \prime}}$ | 11.1 | 3 | M1 For squaring and subtracting <br> M1 Dep (for square rooting) <br> A1 For 11.09-11.1 <br> Award M2 for trigonometry used only for a complete method |
| (a) <br> (b) | $-3-4<x<9-4$ or $-7<x$ or $x<5$ | $-7<x<5$ | $2$ $2$ | M1 Or for -7 and 5 <br> A1 Accept $x>-7$ and $x<5$ <br> B2 B1 for a line that extends from -2 to 5 or for both correct circles in correct place with either no line or incorrect lines or <br> for a correct circle at 5 with line to the left (with or without arrow) <br> or <br> for a correct circle at -2 with line to the right (with or without arrow) |


| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| 9 (a) |  | $8.2 \times 10^{7}$ | 1 | $\begin{array}{ll}\text { B1 } & \text { Cao } \\ & \text { Accept } 8.20 \times 10^{7}\end{array}$ |
| (b) |  | 0.000029 | 1 | B1 Cao |
| (c) | $\left(1.898 \times 10^{27}\right) \div\left(3.285 \times 10^{23}\right)$ | 5800 | 2 | M1 Condone omission of brackets <br> A1 Accept 5700-5800 <br> Accept answers in standard form |


| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| 10 (a) <br> (b) | $\begin{aligned} & 162 \times 12+166 \times 20+170 \times 14+174 \times 7+178 \times 4+182 \times \\ & 3 \\ & \text { or } \\ & 1944+3320+2380+1218+712+546 \end{aligned}$ | $\begin{gathered} 164<w \leq 168 \\ 10120 \end{gathered}$ | $\begin{aligned} & 1 \\ & 3 \end{aligned}$ | B1 <br> M2 freq $\times$ all correct midpoint values stated (or evaluated) with intention to add (condone any two errors in midpoints or frequencies) <br> If not M2 then award M1 for all products $w \times f$ (and $w$ is consistently within the interval, including end values) and intention to add (condone any two errors in their midpoints or frequencies) <br> A1 SCB2 for 168.(666...) rounded or truncated to at least 3 significant figures |


| Question | Working | Answer | Mark | Notes |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 (c) |  | 12, 32, 46, 53, 57, 60 | 1 | B1 |  |
| (d) | $(164,12),(168,32),(172,46),(176,53),(180,57),(184,60)$ | Correct cf graph | 2 | M1 | For at least 4 points plotted correctly at end of interval or for all 6 points plotted consistently within each interval in the freqency table at the correct height. (Eg, using values of 162 , 166,170 , etc, on $x$ axis) Accept curve or line segments Accept curve that is not joined to $(160,0)$ |
| (e) | Eg $171.5(\mathrm{Q} 3)-164.5(\mathrm{Q} 1)$ | 6-8 | 2 | M1 | For a correct method to find lower and upper quartile and an intention to subtract Eg for a correct reading from $45 / 45.75$ or $15 / 15.25$ from vertical axis to find Q1 and Q3 and an intention to subtract. Ft from a cf graph |
|  |  |  |  | A1 | Accept 6-8 <br> ft from a cf graph |


| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| 11 | $\mathrm{Eg}+$ <br> $21 x-6 y=123$ <br> $8 x+6 y=22$$\quad-$$28 x-8 y=164$ <br> $28 x+21 y=77$$x=5 \text { or } y=-3$ <br> Eg $4 x^{\prime} 5 '+3 y=11$ $x=5 \text { and } y=-3$ | $\begin{gathered} x=5 \\ y=-3 \end{gathered}$ | 4 | M1 For coefficient of $x$ or $y$ the same and correct operation to eliminate selected variable (condone any one arithmetic error in multiplication) or for correct rearrangement of one equation followed by correct substitution in the other. <br> A1 cao ( dep on M1) <br> M1 (dep on 1st M1) for substituting their found value into one of the equations <br> or <br> correct method of elimination to find the second variable (as for first M1) <br> A1 cao. Award 4 marks for correct values if at least first M1 scored without any incorrect working. |
| 12 | $\operatorname{Eg}(y=) \frac{(5-2) \times 180}{5}$ or $180-\frac{360}{5}$ or 108 $\frac{(6-2) \times 180}{6}$ or $180-\frac{360}{6}$ or 120 $(5-2) \times 180$ or 540 or $(6-2) \times 180$ or 720 or $2 y+4 x=720$ or $\operatorname{Eg} \frac{(5-2) \times 180}{5}(=108) \text { and }(6-2) \times 180(=720)$ <br> $\operatorname{Eg}(6-2) \times 180=" 108 " \times 2+4 x$ or $720=216+4 x$ or $4 x=504$ or (" 720 " $-2 \times 108$ ) $\div 4$ or $\frac{504}{4}$ | 126 | 4 | M1 For correct method to find $y$ or the size of an angle of a regular hexagon the sum of interior angles of a pentagon or the sum of interior angles of a hexagon or <br> M1 For correct method to find $y$ and the sum of interior angles of a hexagon <br> M1 Dep on previous two method marks. For a correct equation in $x$ only or for a complete method to find $x$ |





| Question | Working | Answer | Mark |  | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 16 | $\begin{aligned} & \mathrm{Eg} \frac{\sin R}{12.7}=\frac{\sin 78}{18.5} \text { or } \frac{12.7}{\sin R}=\frac{18.5}{\sin 78} \text { or } \\ & (\sin R)=\frac{12.7 \sin 78}{18.5} \text { oe } \end{aligned}$ | 102 | 4 | M1 | For correct use of the sine rule |
|  | $\begin{aligned} & \operatorname{Eg}(R=) \sin ^{-1}\left(\frac{\sin 78}{18.5} \times 12.7\right) \text { or } \\ & (R=) \sin ^{-1}(0.671(485 \ldots)) \text { or } 42.1(817 \ldots) \\ & \operatorname{Eg} \\ & \frac{1}{2} \times 12.7 \times 18.5 \times \sin \left(180-78-42.1(817 \ldots)^{\prime \prime}\right) \\ & \frac{1}{2} \times 12.7 \times 18.5 \times \sin (59.8(182 \ldots)) \end{aligned}$ |  |  | M1 | For the correct method to find $R$ Accept ( $R=$ ) 42.1(817...) rounded or truncated to at least 3 significant figures or $(R=) 42$ |
|  |  |  |  | M1 | Dep on M2 <br> For the correct method to find the area of triangle $P Q R$ |
|  |  |  |  | A1 | For 101-102 |


| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| 17 | $\begin{aligned} & \operatorname{Eg} \frac{6+\sqrt{10}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \text { or } \frac{(6+\sqrt{10}) \sqrt{2}}{\sqrt{4}} \text { or } \frac{6 \sqrt{2}+\sqrt{20}}{\sqrt{4}} \text { or } \\ & \frac{6+\sqrt{5} \sqrt{2}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \text { or } \frac{6 \sqrt{2}+\sqrt{10} \sqrt{2}}{\sqrt{4}} \\ & \operatorname{Eg} \frac{6 \sqrt{2}+2 \sqrt{5}}{\sqrt{4}} \text { or } \frac{6 \sqrt{2}}{\sqrt{4}}+\frac{2 \sqrt{5}}{\sqrt{4}} \text { or } \frac{6 \sqrt{2}}{\sqrt{4}}+\sqrt{5} \end{aligned}$ <br> Accept 2 in place of $\sqrt{4}$ for both method marks | $3 \sqrt{2}+\sqrt{5}$ | 3 | M1 For the correct method to rationalise the denominator or for $\frac{6}{\sqrt{2}}+\sqrt{5}$ <br> M1 For partial simplification (the denominator must be rationalised at this stage). Implies first M1 <br> A1 Correct solution only dep on M2 |
| 18 (a) | $(s=) 3+t^{-1}$ | $-\frac{1}{t^{2}}$ | 2 | M1 $\operatorname{For} \frac{1}{t}=t^{-1}$ <br> A1 oe $\mathrm{Eg}-t^{-2}$ |
| (b) | $-1 \times-2 t^{-3}$ or $-1 \times-2(6)^{-3}$ oe | $\frac{1}{108}$ | 2 | M1 ft from (a) provided of form $a+t^{n}$, where $a$ is a constant and $n<0$ <br> A1 Oe <br> Eg 0.00925(925...) rounded or truncated to at least 3 significant figures <br> Accept answers in standard form |





\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Working \& Answer \& Mark \& Notes <br>
\hline 21 (a) \& \& 11 \& 1 \& B1 <br>
\hline (b) \& Eg $y-3=-2 x$ or $2 x=3-y$ or $\frac{y}{2}=\frac{3}{2}-x$ $x-3=-2 y$ or $2 y=3-x$ or $\frac{x}{2}=\frac{3}{2}-y$ \& $$
\frac{3-x}{2}
$$ \& 2

5 \& | M1 For correct first step or $\frac{3-y}{2}$ or $\frac{y-3}{-2}$ |
| :--- |
| A1 |
| oe |
| $\operatorname{Eg} \frac{3}{2}-\frac{x}{2}$ or $\frac{x-3}{-2}$ | <br>

\hline \multirow[t]{4}{*}{(c)} \& $\operatorname{Eg}(\mathrm{gf}(x)=)(3-2 x)^{2}-5$ or $(\mathrm{ff}(x)=)(3-2(3-2 x))$ \& \& \& M1 For $\mathrm{gf}(x)$ or $\mathrm{ff}(x)$ <br>

\hline \& $$
\begin{aligned}
& \operatorname{Eg}(3-2 x)^{2}-5=3-2(3-2 x) \text { or } \\
& (\operatorname{gf}(x)=) 9-6 x-6 x+4 x^{2}-5 \text { or } 4 x^{2}-12 x+4 \text { or } \\
& (\operatorname{ff}(x)=) 3-6+4 x \text { or } 4 x-3 \text { oe }
\end{aligned}
$$ \& \& \& M1 For a correct equation or $\operatorname{gf}(x)$ brackets expanded correctly or $\mathrm{ff}(x)$ brackets expanded correctly <br>

\hline \& $$
\begin{aligned}
& \operatorname{Eg} 9-6 x-6 x+4 x^{2}-5=3-6+4 x \text { or } \\
& 4 x^{2}-12 x+4=4 x-3
\end{aligned}
$$ \& \& \& M1 For a correct equation with all brackets expanded correctly <br>

\hline \& $\operatorname{Eg} 4 x^{2}-16 x+7(=0)$ or $(2 x-1)(2 x-7)(=0)$ oe \& \& \& | M1 For a correct 3-term quadratic (all terms on the same side) |
| :--- |
| A1 oe Dep on at least M3 | <br>

\hline
\end{tabular}

